19 research outputs found

    Self-assembled porous media from particle-stabilized emulsions

    Full text link
    We propose a new mechanism to create self-assembled porous media with highly tunable geometrical properties and permeabilities: We first allow a particle-stabilized emulsion to form from a mixture of two fluids and colloidal particles. Then, either one fluid phase or the particle layer is solidified, which can be achieved by techniques such as polymerization or freezing. Based on computer simulations we demonstrate that modifying only the particle wettability or concentration results in porous structures with a wide range of pore sizes and a permeability that can be varied by up to three orders of magnitude. We then discuss optimization of these properties for self-assembled filters or reactors and conclude that structures based on so-called "bijels" are most suitable candidates.Comment: 4 pages, 4 figure

    Domain and droplet sizes in emulsions stabilized by colloidal particles

    Get PDF
    Particle-stabilized emulsions are commonly used in various industrial applications. These emulsions can present in different forms, such as Pickering emulsions or bijels, which can be distinguished by their different topologies and rheology. We numerically investigate the effect of the volume fraction and the uniform wettability of the stabilizing spherical particles in mixtures of two fluids. For this, we use the well-established three-dimensional lattice Boltzmann method, extended to allow for the added colloidal particles with non-neutral wetting properties. We obtain data on the domain sizes in the emulsions by using both structure functions and the Hoshen-Kopelman (HK) algorithm, and demonstrate that both methods have their own (dis-)advantages. We confirm an inverse dependence between the concentration of particles and the average radius of the stabilized droplets. Furthermore, we demonstrate the effect of particles detaching from interfaces on the emulsion properties and domain size measurements.Comment: 9 pages, 9 figure

    Timescales of emulsion formation caused by anisotropic particles

    Get PDF
    Particle stabilized emulsions have received an enormous interest in the recent past, but our understanding of the dynamics of emulsion formation is still limited. For simple spherical particles, the time dependent growth of fluid domains is dominated by the formation of droplets, particle adsorption and coalescence of droplets (Ostwald ripening), which eventually can be almost fully blocked due to the presence of the particles. Ellipsoidal particles are known to be more efficient stabilizers of fluid interfaces than spherical particles and their anisotropic shape and the related additional rotational degrees of freedom have an impact on the dynamics of emulsion formation. In this paper, we investigate this point by means of simple model systems consisting of a single ellipsoidal particle or a particle ensemble at a flat interface as well as a particle ensemble at a spherical interface. By applying combined multicomponent lattice Boltzmann and molecular dynamics simulations we demonstrate that the anisotropic shape of ellipsoidal particles causes two additional timescales to be of relevance in the dynamics of emulsion formation: a relatively short timescale can be attributed to the adsorption of single particles and the involved rotation of particles towards the interface. As soon as the interface is jammed, however, capillary interactions between the particles cause a local reordering on very long timescales leading to a continuous change in the interface configuration and increase of interfacial area. This effect can be utilized to counteract the thermodynamic instability of particle stabilized emulsions and thus offers the possibility to produce emulsions with exceptional stability.Comment: 14 pages, 14 figure

    Recent advances in the simulation of particle-laden flows

    Get PDF
    A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this report we provide a short overview on a number of existing simulation methods and provide two state of the art examples in more detail. In both cases, the particles are described using a Discrete Element Method (DEM). The DEM solver is usually coupled to a fluid-solver, which can be classified as grid-based or mesh-free (one example for each is given). Fluid solvers feature different resolutions relative to the particle size and separation. First, a multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine resolution) is presented to study the behavior of particle stabilized fluid interfaces and second, a Smoothed Particle Hydrodynamics implementation (mesh-free, meso-scale resolution, similar to the particle size) is introduced to highlight a new player in the field, which is expected to be particularly suited for flows including free surfaces.Comment: 16 pages, 4 figure

    Effects of nanoparticles and surfactant on droplets in shear flow

    Get PDF
    We present three-dimensional numerical simulations, employing the well-established lattice Boltzmann method, and investigate similarities and differences between surfactants and nanoparticles as additives at a fluid-fluid interface. We report on their respective effects on the surface tension of such an interface. Next, we subject a fluid droplet to shear and explore the deformation properties of the droplet, its inclination angle relative to the shear flow, the dynamics of the particles at the interface, and the possibility of breakup. Particles are seen not to affect the surface tension of the interface, although they do change the overall interfacial free energy. The particles do not remain homogeneously distributed over the interface, but form clusters in preferred regions that are stable for as long as the shear is applied. However, although the overall structure remains stable, individual nanoparticles roam the droplet interface, with a frequency of revolution that is highest in the middle of the droplet interface, normal to the shear flow, and increases with capillary number. We recover Taylor's law for small deformation of droplets when surfactant or particles are added to the droplet interface. The effect of surfactant is captured in the capillary number, but the inertia of adsorbed massive particles increases deformation at higher capillary number and eventually leads to easier breakup of the droplet.Comment: 17 pages, 17 figures. The figure quality was reduced to fulfill arXiv's file size restriction

    Liquid-liquid and liquid-solid interactions at the mesoscale

    No full text

    Effects of nanoparticles and surfactant on droplets in shear flow

    No full text
    We present three-dimensional numerical simulations, employing the well-established lattice Boltzmann method, and investigate similarities and differences between surfactants and nanoparticles as additives at a fluid-fluid interface. We report on their respective effects on the surface tension of such an interface. Next, we subject a fluid droplet to shear and explore the deformation properties of the droplet, its inclination angle relative to the shear flow, the dynamics of the particles at the interface, and the possibility of breakup. Particles are seen not to affect the surface tension of the interface, although they do change the overall interfacial free energy. The particles do not remain homogeneously distributed over the interface, but form clusters in preferred regions that are stable for as long as the shear is applied. However, although the overall structure remains stable, individual nanoparticles roam the droplet interface, with a frequency of revolution that is highest in the middle of the droplet interface, normal to the shear flow, and increases with capillary number. We recover Taylor's law for small deformation of droplets when surfactant or particles are added to the droplet interface. The effect of surfactant is captured in the capillary number, but the inertia of adsorbed massive particles increases deformation at higher capillary number and eventually leads to easier breakup of the droplet

    Hydraulic properties of porous sintered glass bead systems

    Get PDF
    n this paper, porous sintered glass bead packings are studied, using X-ray Computed Tomography (XRCT) images at 16 μ\mum voxel resolution, to obtain not only the porosity field, but also other properties like tortuosity, particle sizes, pore throat, particle sphericity, specific surface area and the permeability. The influence of the sintering procedure and the original particle size distributions on the microstructure, and thus on the hydraulical properties, is analyzed in detail. The XRCT data are visualized and studied by advanced image filtering and analysis algorithms on to the extracted sub-systems (cubes of different sizes) to determine the correlations between the microstructure and the measured macroscopic hydraulic parameters. Since accurate permeability measurements are not simple, special focus lies on the experimental set up and procedure, for which a new innovative multi-purpose cell based on a modular concept is presented. Furthermore, segmented voxel-based images (defining the microstructure) are used for 3D (three-dimensional) lattice Boltzmann simulations to directly compute some of the properties in the creeping flow regime. A very good agreement between experimental and numerical porosity and permeability could be achieved, validating the numerical model and results. Porosity and permeability gradients along the sample height could be related to gravity acting during sintering. Furthermore, porosity increases in the outer zones of the samples due to the different contact geometry between the beads and the confining cylinder wall during sintering (which is replaced by a membrane during permeability testing to close these pores at the surface of the sample). The influence of different filters on the gray scale distributions and the impact of the segmentation procedure on porosity and permeability is systematically studied. The complex relationships and dependencies between numerical determined permeabilities and hydraulical influence parameters are investigated carefully. In accordance to the well-known Kozeny-Carman model, a similar trend for local permeability values in dependance on porosity and particle diameter is obtained. From the μ\muXRCT analysis two distinct peaks in pore throat distributions could be identified, which can be clearly assigned to typical pore throat areas occurring in slightly polydisperse granular systems. Moreover, a linear dependency between average pore throat diameter and porosity as well as permeability is reported. Furthermore, almost identical mean values for porosity and permeability are found from conventional Representative Volume Element (RVE) analysis. For sintered granular systems, the empirical constant in the classical Kozeny-Carman model is determined to be 131, while a value of 180 is expected for perfect mono-disperse sphere packings
    corecore